Identification of a Peptide from In vivo Bacteriophage Display with Homology to EGFL6: A Candidate Tumor Vasculature Ligand in Breast Cancer
نویسندگان
چکیده
BACKGROUND A crucial step in tumorigenesis is the recruitment of novel vasculature to the site of neoplasia. Currently, a number of high throughput techniques are employed to identify genes, mRNA and proteins that are aberrantly expressed in tumor vasculature. One drawback of such techniques is the lack of functional in vivo data that they provide. Bacteriophage (phage) display has been demonstrated in vivo to select peptides that home to tumors and tumor vasculature. The peptides can be compared to sequences of putative cancer-related proteins, in order to identify novel proteins essential for tumorigenesis. OBJECTIVES It was hypothesized that an in vivo selection for phage which targeted human breast cancer xenografts could identify peptides with homology to cancer-related proteins for in vivo imaging of breast cancer. METHODS Following four rounds of in vivo selection in human MDA-MB-435 breast cancer xenografted mice, peptide 3-G03 was discovered with significant homology to a putative secreted protein termed EGFL6. Egfl6 mRNA is upregulated in several transcriptomic analyses of human cancer biopsies, and the protein may play a role in tumor vascularization. RESULTS Egfl6 mRNA expression was demonstrated in MDA-MB-435 cells and EGFL6 protein was secreted from these cells. Based on homology of 3-G03 to EGFL6, an EGFL6 peptide was synthesized and shown to target MDA-MB-435 cells. EGFL6 peptide was radiolabeled with 111In and analyzed for biodistribution and tumor imaging capabilities. Single photon emission computed tomography imaging revealed uptake of the peptide in a manner consistent with other tumor vasculature targeting agents.
منابع مشابه
Identification of a Novel Tumor-Binding Peptide for Lung Cancer Through in-vitro Panning
Tumor-targeted therapies are playing growing roles in cancer research. The exploitation of these powerful therapeutic modalities largely depends on the discovery of tumor-targeting ligands. Phage display has proven a promising high throughput screening tool for the identification of novel specific peptides with high binding affinity to cancer cells. In the present study, we describe the use of ...
متن کاملIdentification of a Novel Tumor-Binding Peptide for Lung Cancer Through in-vitro Panning
Tumor-targeted therapies are playing growing roles in cancer research. The exploitation of these powerful therapeutic modalities largely depends on the discovery of tumor-targeting ligands. Phage display has proven a promising high throughput screening tool for the identification of novel specific peptides with high binding affinity to cancer cells. In the present study, we describe the use of ...
متن کاملEvaluation of 99m Tc-MccJ25 peptide analog in mice bearing B16F10 melanoma tumor as a diagnostic radiotracer
Objective(s): Despite recent advances in treatment modalities, cancer remains a major source of morbidity and mortality throughout the world. Currently, the development of sensitive and specific molecular imaging probes for early diagnosis of cancer is still a problematic challenge. Previous studies have been shown that some of the antimicrobial peptides (AMPs) exhibit...
متن کاملConstruction of Human Recombinant ScFv Phage Libraries from the Advanced Stages of Breast Carcinoma Patients
Advances in the field of antibody engineering, and the emergence of powerful screening technology such as filamentous phage display allowed to generate fully human antibodies with high affinities against virtually any desired target from immune or even naIve human repertoires. As a result, the immunogenicity problems related to applications of nonhuman based recombinant antibodies as therapeuti...
متن کاملاستفاده از باکتریوفاژ لامبدا بهعنوان حامل آپوپتین جهت رسانش موثر آن به درون تومور BT-474 سرطان سینه انسانی
Background: Apoptin is a protein from chicken anemia virus that could induce apoptosis specifically in the cancer cells but it has not any effect in the normal cells. Phage therapy is a novel field of cancer therapy and phage nanobioparticles (NBPs) such as λ phage could be modified to deliver and express genetic cassettes into eukaryotic cells safely in contrast with animal viruses. The bacter...
متن کامل